
SGD: Decentralized Byzantine Resilience

El Mahdi El Mhamdi Rachid Guerraoui Arsany Guirgui Sébastien Rouault
EPFL

{elmahdi.elmhamdi, rachid.guerraoui, arsany.guirguis, sebastien.rouault}@epfl.ch

May 13, 2019

Abstract

The size of the datasets available today leads to distribute Machine
Learning (ML) tasks. An SGD–based optimization is for instance typi-
cally carried out by two categories of participants: parameter servers
and workers. Some of these nodes can sometimes behave arbitrarily
(called Byzantine and caused by corrupt/bogus data/machines), im-
pacting the accuracy of the entire learning activity. Several approaches
recently studied how to tolerate Byzantine workers, while assuming
honest and trusted parameter servers. In order to achieve total ML ro-
bustness, we introduce GuanYu, the first algorithm (to the best of our
knowledge) to handle Byzantine parameter servers as well as Byzantine
workers. We prove that GuanYu ensures convergence against 1/3 Byzan-
tine parameter servers and 1/3 Byzantine workers, which is optimal in
asynchronous networks (GuanYu does also tolerate unbounded com-
munication delays, i.e. asynchrony). To prove the Byzantine resilience
of GuanYu, we use a contraction argument, leveraging geometric
properties of the median in high dimensional spaces to prevent (with
probability 1) any drift on the models within each of the non-Byzantine
servers. To convey its practicality, we implemented 1 GuanYu using
the low-level TensorFlow APIs and deployed it in a distributed setup
using the CIFAR-10 dataset. The overhead of tolerating Byzantine
participants, compared to a vanilla TensorFlow deployment that is
vulnerable to a single Byzantine participant, is around 30% in terms of
throughput (model updates per second) - while maintaining the same
convergence rate (model updates required to reach some accuracy).

1The code to reproduce our experiments and assess GuanYu on other situations is
provided at: https://github.com/anonconfsubmit/submit-1. Its sources are encrypted
with the following key: ohd1iyxnigrbsojo8a1z1a9vtnt7mft5

1

ar
X

iv
:1

90
5.

03
85

3v
1

 [
cs

.D
C

]
 5

 M
ay

 2
01

9

https://github.com/anonconfsubmit/submit-1

1 Introduction

Following the recent celebrated successes [28], machine learning (ML) is
expected to play a central role in safety-critical tasks such as driving and
flying people, diagnosing their diseases, and recommending treatments to their
doctors [22]. In such tasks, little room should be left for the vulnerabilities
of today’s machine learning solutions, as routinely reported [9, 24, 33].

One of the most active lines of research in machine learning, coined
adversarial machine learning, consists in highlighting a series of vulnerabilities,
and proposing schemes to solve each of them. These vulnerabilities boil
down to roughly three classes. (1) Evasion Attacks, which are possible after
a model has already been trained, are those that allow a malicious input
to be classified as a benign one, and therefore ‘evade’ a potential security
filter. This line of research is the most covered so far, with hundreds of
papers per year [9]. It benefits from large media coverage to the extent in
which ‘adversarial machine learning’ is often understood only in terms of
‘adversarial examples’ (i.e. evasion attacks). However, there is more than
evasion to adversarial ML. Privacy concerns are also raised by (2) Exploration
Attacks, which lead to the discovery of privacy-sensitive information used
to train the model [4]. There is a third, yet less covered line, although
chronologically among the first set of vulnerabilities to be discovered in
ML [16, 31, 35, 25, 8]: (3) Poisoning Attacks. Here, misleading data in the
training phase influence the quality of the learned model. In this work, we
focus on the latter and encompass it inside the bigger quest for Byzantine
Resilient Machine Learning, which we discuss below, after emphasizing the
danger of data poisoning.

Data poisoning kills. AI safety is often depicted as a far-future concern,
with most illustrative examples using rogue robots and, in the best case,
self-driving cars. In fact, the lack of safety in already deployed and primitive
forms of AI is a present threat. Data Poisoning spans many cases of vul-
nerable ML applications having a negative social impact. To illustrate this,
consider a video that convinces young parents that vaccines are dangerous for
their babies and is labeled as ‘health advice’; this is arguably data poisoning,
given the medical consensus on vaccines. For instance, the World Health
Organization has declared vaccine hesitancy as a global health threat in 2019,
reporting a surge of 30% in measles infections and resurgence in countries that
were close to eliminating the disease [32]. Recent research suggests a negative
role of social medias’ recommender systems in the surge of the anti-vaccine
resentment [38, 30, 37, 20]. Obviously, the surge of anti-vaccine resentment

2

is more complex than mislabeled content poisoning a recommender system.
Striking cases of Data Poisoning are also present in political debates where
a minority of data-points could lead a recommender system to disastrous
consequences: In February 2018, after the tragic parkland high school shoot-
ing in Florida, YouTube’s front page featured a video defaming teenager
survivors Emma Gonzalez and David Hogg among others as “crisis actors”
as they rose to prominence while campaigning for gun control. YouTube
had to publicly apologize but the harm 2 was done and the debate on gun
control in the U.S. successfully poisoned by false claims, some survivors of
the shooting even received death threats 3.

Byzantine resilient machine learning. At a very high level, machine
learning could be seen as an attempt to aggregate knowledge from data-points
and update decision-making algorithms accordingly. Considering the social
media example, users behave (like, comment, follow etc) and create data-
points that are, in turn, aggregated at the learner (to update the model). To
secure machine learning, be it distributed or centralized, robust aggregation
rules have to be devised, far from the vulnerable averaging, which is still the
backbone of the most popular forms of ML [3].

Over the past two years, a growing body of work [10, 5, 14, 42, 7, 18,
40, 41] (and about 30 other papers) encompassed resilience to Poisoning
inside a wider project, Byzantine Resilient Machine Learning. Poisoning
attacks represent a special case of the broader Byzantine Failure model
of [27]. The latter encompasses not only Data Poisoning but goes beyond
to include software bugs, latency and even the worst case: hacked machines
behaving arbitrarily. The work on Byzantine-resilient ML relied on the now
standard parameter-server abstraction [29], in which a server, holding the
model, leverages workers to compute model updates. Not all the workers
are assumed to be honest as a fraction could be Byzantine, but the server
is however assumed to be honest. While the aggregation rules produced
by this line of research are useful in many applications where the server is
trusted, in particular in the single learner case, none of these aggregation
schemes secure a fully decentralized learning scheme, where servers could
also be subject to a malicious behavior.

2We are not inferring that this falls necessarily into pure poisoning. Whatever the
vulnerability is, the safety of recommender systems such as YouTube’s against poisoning is
an urgent question.

3https://goo.gl/DaK5X9

3

https://goo.gl/DaK5X9

Contributions. We present GuanYu 4, the first Byzantine tolerant learn-
ing algorithm that combines (a) the resilience to Byzantine workers with (b)
the (so far unsolved issue of) resilience to Byzantine parameter servers. We
prove that GuanYu tolerates up to 1/3 Byzantine servers and 1/3 Byzantine
workers, which is optimal in the asynchronous setting. A major technical
scheme, underlying the resilience of GuanYu to Byzantine parameter servers,
is a contraction argument leveraging geometric properties of the median
in high dimensional spaces. Using this argument, we prevent (with proba-
bility 1) any drift on the models within each of the non-Byzantine servers.
Interestingly, we show that the dimension plays against the adversary.

To convey its practicality, we build GuanYu on top of TensorFlow low-
level APIs [3] and experimentally assess our implementation. Through our
experiments, we show that GuanYu can indeed tolerate Byzantine behavior
with a reasonable overhead compared to the non Byzantine-resilient vanilla
TensorFlow deployment. Specifically, we study the overhead of building
GuanYu over TensorFlow low-level APIs instead of leveraging its distributed
runtime (which we quantify by 65%) and the cost of Byzantine resilience
(which we quantify by around 30%).

The paper is organized as follows. Section 2 presents the formal setting
of distributed learning and specify the threat model. Section 3 describes
GuanYu both on the server side as well as on the worker side. Section 4
discusses the practical aspects of our system implementation and Section 5 de-
scribes our evaluation results. We conclude in Section 6. The full convergence
proof of GuanYu is given as a supplementary material.

The code to reproduce our experiments and assess GuanYu on other situa-
tions is provided at: https://github.com/anonconfsubmit/submit-1. Its
sources are encrypted with the following key: ohd1iyxnigrbsojo8a1z1a9vtnt7mft5.

2 Model

We build on the standard synchronous parameter server model [29], with
two main differences. Figure 1 gives a schematic overview.

1. We assume some minority of the nodes (i.e. machines) involved in the
distributed SGD process to be adversarial, or Byzantine, in the parlance of
[10, 14, 21]. We give the exact specification of the adversary’s capabilities in
Section 2.2.

4Guan Yu was a Chinese general of the 3rd century AD. According to common belief,
he held very high moral standards and is widely respected today.

4

https://github.com/anonconfsubmit/submit-1

Worker A Worker B Worker C

Worker D

Worker G

Worker E Worker F

Worker H Worker I

Parameter
server A

Parameter
server B

Parameter
server C

Parameter
server D

Legend
Node

Network
Byzantine
nodes
Covert
network

Figure 1: A distributed ML setup with four parameter servers and nine
workers, including respectively one and three Byzantine nodes. The network
is assumed to be asynchronous, i.e. we assume no bound on the time it takes
to deliver a message. This is not to be confused with asynchronous SGD
(see Section 2.1). Byzantine nodes can cooperate by communicating with
each other, using a different, arbitrarily fast network. They are viewed as
one, cooperating adversarial entity (the adversary).

2. The second difference with the standard parameter server model (and
previous works) is that we consider several replicas of a parameter server,
instead of one. Replicating the parameter server prevents it from being a
single point–of–failure, unlike in classical approaches.

While removing the strong assumption of a single correct parameter server
makes our algorithm more robust than its predecessors, it also increases its
complexity. We could use standard state machine replication [36] (SMR)
to create the abstraction of one parameter server (which would allow the
transparent use of published algorithms that tolerate Byzantine workers
[10, 14, 21]) while benefiting from the resilience of having many underlying
replicas. But the SMR approach raises two serious issues:

1. The overhead of classical SMR approaches (e.g. [36]) in the case

5

of distributed SGD is potentially huge, as nodes exchange gradients and
parameter vectors that can be several hundreds MB large. In this context,
re–transmissions and synchronizations guaranteeing that all the parameter
servers share the same global state can induce severe additional performance
loss. In fact, excessive synchronization of the parameter server can be useless
for distributed SGD. Indeed, using imprecise or mildly diverging parameters
have proven themselves beneficial in terms of convergence speed and quality
[44, 6, 26].

2. SMR has been proven to be impossible in asynchronous networks
[23], and requires a bound on communication delays between non–Byzantine
nodes (at least to hold eventually). We argue the assumption of such a
time bound is, in the presence of adversarial nodes, at least inefficient, if
not dangerous5. The rationale is that, either the estimation of such a time
bound is large enough so that it always remains true in the actual system
(but incurs long timeouts), or this time bound is small enough to be violated
in practice (which is prone to breaking any proof of convergence). The latter
case may not be a rare event, as in practice the adversary has a wide range
of possible actions that are not (or imperfectly) modeled, e.g. congesting
some parts of the network for some short periods of time.

2.1 Asynchronous Network / Synchronous Training

In this paper, we study bulk–synchronous training over an asynchronous
network. Respectively: 1. A parameter server does not need to wait for all
the workers’ gradients to make progress, and vice versa. Only the gradients
computed at learning step t (which could be more than one) are used for the
parameter updates at the same step t. 2. No assumption is made on the
time it takes for a non–Byzantine node’s response to be computed, sent and
delivered back to another non–Byzantine node.

A remark is in order with respect to the different meanings of asynchrony,
respectively in the distributed computing and the distributed ML literature.
In the latter, asynchrony is classically used in the context of SGD training,
for algorithms where nodes (most often the workers) are not always working
on the same learning step [13, 17, 3]. In the former, asynchrony expresses
an orthogonal concept: the lack of any bound on communication delays.

5Optimistic asynchronous algorithms do exist, like [12], making “liveness” timing
assumptions (also arguably challenged in an adversarial setting). Our GuanYu algorithm
also builds on “liveness” assumptions, but from the intrinsic “resilience capabilities” of
SGD (see Section 3.4) and not from any network timing.

6

2.2 Adversary Capabilities

The adversary is an entity that controls all Byzantine nodes (Figure 1) and
which goal is to prevent the distributed SGD process from converging to a
state that could have been achieved if there was no adversary.

As in [10, 14, 21], we assume an omniscient adversary. At any time, it
has access to the full memory of every other node and the packets being
transferred over the network. We assume that the adversary is however not
omnipotent: it can only send messages from the nodes it controls, of course
not necessarily following the protocol described in Section 3.3.

3 GuanYu

3.1 Background

GuanYu uses several Gradient Aggregation Rules (GARs). A GAR is
a function of

(
Rd
)n → Rd, where (n, d) ∈ (N− {0})2. For each step of

a synchronous distributed SGD [29], the GAR’s role is to aggregate the
n workers’ gradient estimations into 1 gradient, in order to update the
parameter vector. In a non–Byzantine context, the arithmetic mean is
commonly used [3].

A (α, f)–Byzantine resilient GAR tolerates the presence of some minority,
noted f < n, of Byzantine workers (i.e. able to send arbitrary gradients).
In the context of a single parameter server (assumed to be honest), Multi–
Krum, introduced in [10], enables to tolerate Byzantine workers. It ensures
the almost–sure convergence of the parameter vector to a point where the
gradient of the loss function is null.

More specifically, assuming f ∈ N−{0}, Multi–Krum requires n ≥ 2f + 3
to be (α, f)–Byzantine resilient, along with other assumptions (see Section
3.4). Multi–Krum works by assigning a score to each input gradient. The
score of input gradient x is the sum of the distances between x and its
n− f − 2 closest neighbor input gradients. Multi–Krum then outputs the
arithmetic mean of the n− f − 2 smallest–scoring gradients.

3.2 Notations

We note M the coordinate–wise median, i.e. each coordinate i of the output
vector is the median applied over all the input vectors’ ith coordinates.
Multi–Krum is noted F .

Let
(
n, n, f, f , q, q, d

)
∈ (N− {0})7, each representing:

7

• n ≥ 3f + 3 the total number of parameter servers,
among which f are Byzantine.

• n ≥ 3f + 3 the total number of workers,
among which f are Byzantine.

• 2f + 3 ≤ q ≤ n− f the quorum used for M .

• 2f + 3 ≤ q ≤ n− f the quorum used for F .

• d the dimension of the parameter space Rd.

The quorums indicate the number of messages (either gradients or parameter
vectors in our algorithm) to wait before aggregating them (using either F or
M). See Figure 2.

Let (without loss of generality):

• [1 .. n− f] be indexes of non–Byzantine servers
[n− f + 1 .. n] be indexes of Byzantine servers

•
[
1 .. n− f

]
be indexes of non–Byzantine workers[

n− f + 1 .. n
]

be indexes of Byzantine workers

Let θ
(i)
t be a notation for the parameter vector at parameter server

i ∈ [1 .. n− f] for step t ∈ N. Let G
(i)
t be a notation for the gradient

distribution at worker i ∈
[
1 .. n− f

]
for step t ∈ N. Let L be the loss

function we aim to minimize. Let ∇L (θ) be the real gradient of the loss

function at θ, and let ∇̂L (θ) be a stochastic estimation of the gradient,
following G, of L at θ.

3.3 GuanYu’s Algorithm

We now overview our algorithm. Each non–Byzantine parameter server i
starts (at step t = 0) with the same parameter vector:

∀i ∈ [1 .. n− f] , θ
(i)
0 , θ0

One full step of the algorithm is summarized in Figure 2, and described
in the following three paragraphs:

1. Step t ∈ N begins with each (non–Byzantine) parameter server i

broadcasting its current parameter vector θ
(i)
t to every worker. Each (non–

Byzantine) worker j aggregates with M the q first received θ
(i)
t , and computes

an estimate g
(j)
t of the gradient at the aggregated parameters.

8

2. Then, each (non–Byzantine) worker j broadcasts its computed gradient

estimation g
(j)
t to every parameter server. Each (non–Byzantine) parameter

server i aggregates with F the q first received g
(j)
t , and performs a local

parameter update with the aggregated gradient, resulting in θ
(i)
t .

3. Finally, each (non–Byzantine) parameter server i broadcasts θ
(i)
t+1 to

every other parameter servers, aggregating with M the q first received θ
(k)
t+1.

This aggregated parameter vector is θ
(i)
t+1.

Parameter server i ∈ [1 .. n− f] Worker j ∈
[
1 .. n− f

]
θ

(i)
t q→

q←
g

(j)
t = ∇̂L

(
M
(
θ

(a)
t . . . θ

(b)
t

))
∼ G(j)

t

θ
(i)
t − ηt F

(
g

(x)
t . . . g

(y)
t

)
= θ

(i)
t+1 y

q

M
(
θ

(z)
t+1 . . . θ

(w)
t+1

)
= θ

(i)
t+1 q→

Figure 2: Operations of GuanYu, as described in Section 3.3. The arrow
indicates a broadcast (and its direction), along with the number of messages
delivered by the receiving ends, late messages being discarded. For instance
in the second row, in all the workers (the receiving ends) M is always called
with the first q received parameter vectors, and in the third row, F is called
in each parameter server with the first q received gradients. The rest of the
notation is defined in Section 3.2.

3.4 Assumptions

Besides the assumptions6 from [10], which allow convergence in the case of
one trusted parameter server, we assume that:

1. L is Lipschitz continuous, i.e. ∃l > 0,

∀ (x, y) ∈
(
Rd
)2
, ‖∇L (x)−∇L (y)‖ ≤ l ‖x− y‖

2. ∃ts ∈ N, ∀t > ts, ∃ (ut, ot) ∈ Rd × Rd,
∃
(
δ

(1)
t . . . δ

(α)
t , r

(1)
t . . . r

(α)
t

)
∈ Rα ×

(
Rd2
)α

,

6The exhaustive list is available in the supplementary material

9

∀i ∈ [1 .. n− f] ,

a
(i)
t ∼ N

(
0, δ

(i)
t

)
, b

(i)
t ∼ N

(
ot, r

(i)
t

)
,

with a
(1)
t . . . a

(α)
t , b

(1)
t . . . b

(α)
t mutually independent,

and: θ
(i)
t = a

(i)
t · ut + b

(i)
t

Our Lipschitz continuity assumption acts as the only bridge between the

parameter vectors θ
(i)
t and the stochastic gradients ∇̂L. To our knowledge,

the validity of this assumption has not been asserted in practical cases.
Nevertheless, we hardly believe that a Byzantine resilient algorithm can
be proven without assuming some kind of similarities between gradients
estimated at close but different parameters.

Building upon [19], the second assumption conveys that, after some
step ts ∈ N, all the non–Byzantine parameter vectors are roughly aligned.
This assumption has also been supported by the experiments we conducted,
available in the supplementary materiel (Section 3.4).

3.5 Proof Intuition

Under the assumption established in Section 3.4, and:

∀t ∈ N, ∀
(
θ

(n−f+1)
t . . . θ

(n)
t

)
∈
(
Rd
)f
,

our algorithm guarantees that:

lim
t→+∞

E
∥∥∥∇L(M (

θ
(1)
t . . . θ

(n)
t

))∥∥∥ = 0. (1)

Equation 2 is an adapted formulation of the commonly admitted termi-
nation criteria for non–convex optimization tasks [11].

We provide below the key intuitions and steps of the proof. The full
proof is provided in the supplementary material.

1. Regarding the global strategy, we identify two independent proposi-
tions that are sufficient for Equation 2. Namely, it is enough to prove that:

1. Every pair of non–Byzantine parameter vectors θ
(i)
t and θ

(j)
t gets almost–

surely arbitrary close to each other after some (possibly large) step t ∈ N.
2. The algorithm does not prevent almost–sure convergence of the gradient

computed at any single non–Byzantine parameter vector θ
(i)
t , e.g. θ

(1)
t . The

intuition is straightforward here: if the gradient at one (non–Byzantine)
parameter vector converges, and the other non–Byzantine parameter vectors
get arbitrarily close to it, then by construction of the median (because there

10

is a majority of non–Byzantine parameter servers) and the Lipschitz conti-
nuity of L (small differences in the parameter vectors always make small
differences in the gradients), Equation 2 is verified.

2. Regarding proposition 1., two properties come into effect: the learning
rate ηt converging toward 0, and the (average) contraction effect of the
coordinate–wise median. This contraction effect states that, on average, the

distance between any two θ
(i)
t and θ

(j)
t is strictly smaller than the maximum

(for some a, b) distance between θ
(a)
t and θ

(b)
t . Then, the fact that the learning

rate goes toward 0, along with the Lipschitz continuity of L, intuitively
translate into the possible existence of two phases. Before some step tinflex,
the (bounded) stochastic noise of the (non–Byzantine) gradient estimations,
on average, pushes the (non–Byzantine) parameter vectors away from each
other; the “exploratory phase”. After step tinflex, the learning rate becomes
small enough so that, on average, the contraction effect pulls back together
the (non–Byzantine) parameter vectors.

Regarding proposition 2., the studied parameter vector θ
(1)
t is modified

by the gradient descent itself, and the coordinate–wise median. We already
know that (stochastic) gradient descent (with Multi–Krum) alone would
converge [10]. Using proposition 1., the intuition is that, because of Lipschitz
continuity of L, the non–Byzantine gradient estimations are all following
arbitrary close random distributions after some step t, meeting the original
conditions of [10].

We also argue that 1/3 of Byzantine nodes, both for the workers and
the parameter servers, is (asymptotically) optimal in asynchronous net-
works. The rationale stems from the optimal breakdown point 7 of 1/2
for any synchronous robust aggregation scheme (e.g. F and M), identi-
fied in [34]. Network asynchrony makes it impossible to differentiate a
slow non–Byzantine node from a non–responding Byzantine node. This
observation implies the over–provisioning of (at least) 1/2 non–Byzantine
nodes for 1/2 Byzantine ones. Hence the final optimal breakdown point of
1/2/3/2 (one half Byzantine nodes/total of three halves) = 1/3.

4 Implementation

We describe in this section our design and implementation of the GuanYu
system. We use TensorFlow [3], a popular framework for distributed Machine
Learning, as an underlying implementation framework. This decision has

7Defined as the faction of Byzantine nodes beyond which no resilient aggregation exists.

11

its pros and cons. On the one hand, TensorFlow is one of the most used
distributed ML frameworks with a wide community support. It also provides
good performance in terms of scalability and distributed GPUs support. On
the other hand, TensorFlow is not resilient to even one Byzantine node, either
a worker or a parameter server. Adding Byzantine resilience to TensorFlow
requires modifying its core runtime to support extra communication and
processing on top of the learning low-level abstractions. Tweaking the dis-
tributed core runtime of TensorFlow to support parameter server replication
is cumbersome.

We pursued another route: we use TensorFlow as a local library, not
as a distributed framework. More specifically, we use the TensorFlow low-
level abstractions for calculating the gradients and updating the model,
but we handle communication ourselves between all the nodes (workers
and parameter servers) in the learning process. However, to be consistent
with TensorFlow design, we encode all messages in protocol buffers and
we use gRPC for communication. A caveat is worth noting here: handling
communication outside the dataflow graph introduces an overhead due to the
context switches between TensorFlow and Python runtimes. This includes,
for example, converting tensors to Numpy arrays and vice versa. We quantify
this overhead in Section 5.

Following our design, each worker builds an independent but similar
graph to all other graphs built by other workers. The same is applied by
the parameter servers (Figure 2). Each parameter server holds a copy of
the model so that a worker can pull the copy of the current model to work
at each iteration. Workers store only a copy of the model so that they
can do the backpropagation step each iteration. We implement the extra
processing functions that we use (e.g. median) as a TensorFlow operation so
that they can be integrated in the graph built by either workers or parameter
servers. Each node also initiates a gRPC server to respond to other nodes’
requests. Moreover, each node implements the procedures that can be called
by other nodes to pull whatever information they want either the model or
the gradients. We assume an asynchronous network, though our learning
algorithm is synchronous in the sense of Section 2.1.

5 Experimental Evaluation

We evaluate the performance of GuanYu following a rather standard method-
ology in the distributed ML literature. In particular, we consider the image
classification task due to its wide adoption as a benchmark for distributed

12

ML literature [3, 15, 43].

5.1 Setting

Platform. We use Grid5000 [2] as an experimental platform. We employ
18 compute/worker nodes in addition to one (in a non-Byzantine resilient de-
ployment) or six (in the case of employing GuanYu for Byzantine resilience)
parameter servers, all from the same cluster, each having 2 CPU (Intel Xeon
E5-2630) with 8 cores, 128 GiB RAM and 10 Gbps Ethernet.

Dataset. We use the CIFAR-10 dataset [1], a widely used dataset in image
classification [39, 43], which consists of 60,000 color images (we use 50,000
images for training and the rest for testing) in 10 classes. We employ a
convolutional neural network with a total of 1.75M parameters as shown
in Table 1. Unless stated otherwise, we use a mini-batch of size 128 and
learning rate 0.001.

To respect the limits imposed by GuanYu on the ratio of Byzantine
participants, we use up to five Byzantine workers (out of total of 18 nodes)
and one Byzantine server (out of total of six nodes). A severe attack that a
Byzantine participant can perform is to send bad data (gradients or model)
that pulls the learning process out of the convergence area. We experimented
with such attack by modeling a Byzantine behavior in a way that sends
a totally corrupted data compared to the correct one it should send. We
also experimented a scheme in which a parameter server sends different
(bad) models to different workers in the same iteration. We show that the
vanilla deployment of TensorFlow cannot tolerate even one Byzantine player
performing any of these attacks.

Table 1: CNN Model parameters.

Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3

Kernel size
Strides

32×32×3
5×5×64
1×1

3×3
2×2

5×5×64
1×1

3×3
2×2

384 192 10

5.2 Evaluation Metrics

We evaluate the performance of GuanYu using the following standard
metrics.

13

Throughput.8 This metric measures the total number of updates that the
deployed system can do per second. The factors that affect the throughput are
the time to compute a gradient, communication delays (workers receive the
model, send the gradient, and servers also exchange the computed model),
and the aggregation time on both sides, workers and parameter servers.
Accuracy. This metric measures the top–1 cross–accuracy: the fraction of
correct predictions among all the predictions, using the testing dataset. We
measure accuracy both with respect to time and model updates.

We discuss the breakdown for the overhead imposed by GuanYu and
differentiate between the overhead due to using TensorFlow low-level APIs
(while handling the communication outside the graph) and the overhead
due to the replicated parameter server and the communicated messages (the
Byzantine resilience cost). First, we quantify the overhead of our system in
a non-Byzantine environment. Second, we confirm that vanilla TensorFlow
cannot tolerate even one Byzantine parameter server while GuanYu does.

0 200 400 600 800 1000 1200 1400
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

vanilla TF
GuanYu (vanilla)
GuanYu (fwrk=0, fps=0)
GuanYu (fwrk=5, fps=0)
GuanYu (fwrk=5, fps=1)

(a)

0 200 400 600 800 10001200140016001800
Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

vanilla TF
GuanYu (vanilla)
GuanYu (fwrk=0, fps=0)
GuanYu (fwrk=5, fps=0)
GuanYu (fwrk=5, fps=1)

(b)
mini-batch size = 128

0 200 400 600 800 1000 1200 1400
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

vanilla TF
GuanYu (vanilla)
GuanYu (fwrk=0, fps=0)
GuanYu (fwrk=5, fps=0)
GuanYu (fwrk=5, fps=1)

(c)

0 200 400 600 800 1000 1200 1400 1600
Time (s)

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

vanilla TF
GuanYu (vanilla)
GuanYu (fwrk=0, fps=0)
GuanYu (fwrk=5, fps=0)
GuanYu (fwrk=5, fps=1)

(d)
mini-batch size = 32

Figure 3: Overhead of GuanYuin a non-Byzantine environment.

5.3 Non–Byzantine Environment

In this section, we study the overhead of GuanYu, in the absence of
Byzantine players, be they workers or parameter servers. We consider

8Although there is no figures (for brevity) that shows it on the y–axis, throughput can
be, roughly, derived from the given figures.

14

two non–Byzantine resilient baselines: (1) vanilla TensorFlow (vanilla TF),
in which we use the TensorFlow distributed core runtime and (2) vanilla
GuanYu in which we execute exactly the same graph, as in vanilla TF,
while handling the communication ourselves, as described in Section 4. The
difference in performance between both baselines quantifies the overhead
of abandoning the TF distributed runtime and opting for the design we
use for GuanYu. We compare different deployments of GuanYu (which
does tolerate Byzantine players) against these baselines while changing the
declared numbers of Byzantine workers and parameter servers, keeping these
numbers in the ranges instructed by our theory.

Figure 3(a) shows that all compared systems achieve almost the same
convergence rate. Moreover, it shows that deploying the Byzantine variant
of GuanYu does not add any overhead compared to the non–Byzantine one
(vanilla GuanYu), in terms of convergence steps. However, the cost of our
design and that of being Byzantine resilient appears in Figure 3(b) (and
even more obvious while using a mini-batch size of 32 in Figure 3(d)) which
depicts the convergence rate against time. For example, vanilla TF reaches
60% accuracy in 268 seconds which is 65% better than the vanilla deployment
of GuanYu where the Byzantine deployment reaches the same accuracy
level in (up to) 33% more time (which is the cost of Byzantine–resilience)
compared to the latter.

It may look counter-intuitive that tolerating more Byzantine players helps
achieve a better convergence rate in terms of model updates. This is in fact
due to the design we use while implementing GuanYu. Parameter servers
wait for a quorum of 2f + 3 replies from workers before doing the aggregation
step as discussed in Section 3.3 (while f is the declared number of Byzantine
workers). Thus, increasing f forces servers to wait for more replies. Although
this decreases the throughput of the learning process, parameter servers
gather more gradients from workers, helping them to do better steps and
converge faster (in terms of number of epochs). Using a smaller batch size
(Figure 3(c)) emphasizes the convergence rate overhead while declaring a
small number of Byzantine participants.

Overhead We attribute the performance difference between vanilla TF
and vanilla GuanYu to two main reasons.

1. Abandoning the highly optimized distributed runtime of TensorFlow
and replacing it with our implementation. This includes device place-
ment, using operations that accept and output the same type of data
structures (tensors), and the optimized communication between par-

15

ticipants. In the current implementation of GuanYu, we use naive
approach to implement all of these blocks.

2. The context switch between TensorFlow and numpy/python runtimes.
In our implementation, each participant, being a worker or a parame-
ter server, builds its own graph independently to do some processing.
Transferring the result to other contributing processes requires con-
verting the resulting tensor to numpy array, serializing it in a protocol
buffer then sending it over a gRPC channel. On the other side, a
receiver endpoint should do exactly the same steps in a reverse order
while feeding back the resulting tensor to its graph. Our measurements
show that converting tensors to numpy arrays (and vice versa) and
feeding tensors to a graph incur a big overhead.

The overhead of tolerating Byzantine failures is more obvious. First,
the parameter server should be replicated; this increases the communication
overhead and the idle time of workers while waiting to gather a quorum of
replies from these parameter servers. Second, parameter server(s) processing
time increases because of using a robust aggregation rule (e.g., coordinate-
wise median) on the received gradients rather than a simple, fast one like
averaging. Third, parameter servers should communicate towards the end of
each iteration before updating the model, gathering a quorum and filtering our
Byzantine responses (if any) through applying (again) a robust aggregation
rule (e.g., median). We believe that this overhead is inevitable in any totally
Byzantine ML system.

0 200 400 600 800 100012001400
Model Updates

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy vanilla TF

vanilla TF (Byzantine)
GuanYu (fwrk=5, fps=1)

Figure 4: Impact of Byzantine players on convergence.

5.4 Byzantine Environment

We discuss here the result of deploying GuanYu in the presence of Byzan-
tine behavior. Figure 4 shows that GuanYu can survive the presence of

16

Byzantine participants while vanilla TensorFlow cannot tolerate even one.
We put a Byzantine attack in one of the following categories: (1) sending
corrupted gradients to parameter servers, (2) sending corrupted parameter
vectors/model to workers, (3) sending different replies to different partic-
ipants, or (4) not responding at all to requests. We believe that, as a
Byzantine player, choosing the last option is not wise because this will not
harm convergence anyway (even a vanilla TF deployment can converge in
the existence of a silent Byzantine player). We tested different possible
Byzantine behaviors (on both ends: workers and parameter servers) and
we got approximately similar results; we present an instance in Figure 4.
Thanks to using robust aggregation rules at both ends (parameter servers and
workers) and to our robust algorithm, GuanYu can converge (as depicted
in the figure) in all cases.

6 Conclusion

In this paper, we present GuanYu, the first algorithm to provide theoretical
guarantees against Byzantine parameter servers, in addition to tolerating
Byzantine workers. We show that GuanYu guarantees convergence in
the presence of a minority of Byzantine participants as well as asynchrony.
Through building GuanYu over TensorFlow and deploying it in a distributed
setup, we show that GuanYu can tolerate Byzantine behavior with a reason-
able overhead compared to a non-Byzantine vanilla TensorFlow deployment.

References

[1] Cifar dataset. https://www.cs.toronto.edu/~kriz/cifar.html.

[2] Grid5000. https://www.grid5000.fr/.

[3] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, 2016.

[4] Mart́ın Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In SIGSAC, pages 308–318, 2016.

17

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.grid5000.fr/

[5] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic
gradient descent. In Neural Information Processing Systems, to appear,
2018.

[6] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Randomized quantization for communication-optimal stochastic gradient
descent. arXiv preprint arXiv:1610.02132, 2016.

[7] Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima
Anandkumar. signSGD with majority vote is communication efficient
and fault tolerant. In International Conference on Learning Representa-
tions, 2019.

[8] Battista Biggio and Pavel Laskov. Poisoning attacks against support
vector machines. In ICML, 2012.

[9] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise
of adversarial machine learning. arXiv preprint arXiv:1712.03141, 2017.

[10] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gradient
descent. In Neural Information Processing Systems, pages 118–128,
2017.

[11] Léon Bottou. Online learning and stochastic approximations. Online
learning in neural networks, 17(9):142, 1998.

[12] Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[13] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Re-
visiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981,
2016.

[14] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papail-
iopoulos. Draco: Byzantine-resilient distributed training via redundant
gradients. In International Conference on Machine Learning, pages
902–911, 2018.

[15] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In OSDI, volume 14, pages 571–582, 2014.

18

http://arxiv.org/abs/1610.02132
http://arxiv.org/abs/1712.03141
http://arxiv.org/abs/1604.00981

[16] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al.
Adversarial classification. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
99–108. ACM, 2004.

[17] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui,
Rhicheek Patra, Mahsa Taziki, et al. Asynchronous byzantine machine
learning (the case of sgd). In ICML, pages 1153–1162, 2018.

[18] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. Robustly learning a gaussian: Getting
optimal error, efficiently. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2683–2702. Soci-
ety for Industrial and Applied Mathematics, 2018.

[19] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Ham-
precht. Essentially no barriers in neural network energy landscape. arXiv
preprint arXiv:1803.00885, 2018.

[20] Mark Dredze, David A Broniatowski, Michael C Smith, and Karen M
Hilyard. Understanding vaccine refusal: why we need social media now.
American journal of preventive medicine, 50(4):550–552, 2016.

[21] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The
hidden vulnerability of distributed learning in Byzantium. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3521–3530, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

[22] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M
Swetter, Helen M Blau, and Sebastian Thrun. Dermatologist-level classi-
fication of skin cancer with deep neural networks. Nature, 542(7639):115,
2017.

[23] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. JACM, 32(2):374–382,
1985.

[24] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra
Raghu, Martin Wattenberg, and Ian Goodfellow. Adversarial spheres.
arXiv preprint arXiv:1801.02774, 2018.

19

http://arxiv.org/abs/1803.00885
http://arxiv.org/abs/1801.02774

[25] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein,
and JD Tygar. Adversarial machine learning. In Proceedings of the
4th ACM workshop on Security and artificial intelligence, pages 43–58.
ACM, 2011.

[26] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. TOPLAS, 4(3):382–401, 1982.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[29] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server. In
OSDI, volume 1, page 3, 2014.

[30] Tanushree Mitra, Scott Counts, and James W Pennebaker. Under-
standing anti-vaccination attitudes in social media. In ICWSM, pages
269–278, 2016.

[31] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph,
Benjamin IP Rubinstein, Udam Saini, Charles A Sutton, J Doug Tygar,
and Kai Xia. Exploiting machine learning to subvert your spam filter.
LEET, 8:1–9, 2008.

[32] World Health Organization and Rada Akbar. Ten threats
to global health in 2019. https://www.who.int/emergencies/

ten-threats-to-global-health-in-2019, 2019. [Online; accessed
21-January-2019].

[33] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Asia Conference on Computer and Com-
munications Security, pages 506–519, 2017.

[34] Peter J Rousseeuw. Multivariate estimation with high breakdown point.
Mathematical statistics and applications, 8:283–297, 1985.

20

http://arxiv.org/abs/1610.05492
https://www.who.int/emergencies/ten-threats-to-global-health-in-2019
https://www.who.int/emergencies/ten-threats-to-global-health-in-2019

[35] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph,
Shing-hon Lau, Satish Rao, Nina Taft, and JD Tygar. Antidote: un-
derstanding and defending against poisoning of anomaly detectors. In
SIGCOMM, pages 1–14, 2009.

[36] Fred B Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. CSUR, 22(4):299–319, 1990.

[37] Naomi Smith and Tim Graham. Mapping the anti-vaccination movement
on facebook. Information, Communication & Society, pages 1–18, 2017.

[38] Melodie Yun-Ju Song and Anatoliy Gruzd. Examining sentiments and
popularity of pro-and anti-vaccination videos on youtube. In Proceedings
of the 8th International Conference on Social Media & Society, page 17.
ACM, 2017.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[40] Lili Su and Shahin Shahrampour. Finite-time guarantees for byzantine-
resilient distributed state estimation with noisy measurements. arXiv
preprint arXiv:1810.10086, 2018.

[41] Pooja Vyavahare, Lili Su, and Nitin H Vaidya. Distributed learning
with adversarial agents under relaxed network condition. arXiv preprint
arXiv:1901.01943, 2019.

[42] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Byzantine-
suspicious stochastic gradient descent. arXiv preprint arXiv:1805.10032,
2018.

[43] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. Po-
seidon: An efficient communication architecture for distributed deep
learning on GPU clusters. In USENIX ATC, pages 181–193, 2017.

[44] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning
with elastic averaging sgd. In NIPS, pages 685–693, 2015.

21

http://arxiv.org/abs/1810.10086
http://arxiv.org/abs/1901.01943
http://arxiv.org/abs/1805.10032

SGD: Decentralized Byzantine Resilience

Convergence proof of GuanYu

7 Preliminary material

GuanYu uses several components we introduce below.

7.1 Multi–Krum

Multi–Krum, noted F in the protocol and its convergence proof, is a Gradient
Aggregation Rule (GAR) that has been introduced, along with the concept
of (α, f)–Byzantine resilience, in [10].

Consider (n, d) ∈ (N− {0})2. A GAR is a function of
(
Rd
)n → Rd, e.g.

the arithmetic mean. Supposing some majority of its inputs follow i.i.d. the
same distribution X , a (α, f)–Byzantine resilient GAR outputs a gradient y
such that:

• E y is in the same half–space as EX
• the first 4 statistical moments of y are bounded above by a linear

combination of the first 4 statistical moments of x ∼ X
These conditions enable such a GAR to be plugged–in the “global confinement”
proof of [11].

Let f ∈ N−{0}, and n ≥ 2f + 3. Multi–Krum works by assigning a score
to each input gradient. This score of x is the sum of the distances between
x and its n− f − 2 closest input gradients. Finally, Multi–Krum outputs the
arithmetic mean of the n− f − 2 smallest–scoring gradients.

7.2 Coordinate–wise median

We formally define the median, noted M, as follows:

∀n ∈ N− {0} , ∀ (x1 . . . xn) ∈ Rn, M (x1 . . . xn) , xs ∈ R

22

such that:

∃ (L,H) ⊂ ([1 .. n]− {s})2 , L ∩H = ∅, |L| = |H| =
⌊n

2

⌋
,

∀l ∈ L, xl ≤ xs, ∀h ∈ H, xh ≥ xs

and: {
∃ (a, b) ∈ [1 .. n]2 , xs = xa+xb

2 if n is even
xs ∈ {x1 . . . xn} if n is odd

We can note that: ∀n ∈ N−{0} , ∀ (x1 . . . xn) ∈ Rn, |M (x1 . . . xn)| ≥ 1.

We formally define the coordinate–wise median, noted M , as follows:

∀ (d, n) ∈ (N− {0})2 , ∀ (x1 . . . xn) ∈
(
Rd
)n
, M (x1 . . . xn) , xs ∈ Rd

such that:
∀i ∈ [1 .. d] , xs[i] =M (x1[i] . . . xn[i])

8 GuanYu

8.1 Constants and notations

Let
(
n, n, f, f , q, q, d

)
∈ (N− {0})7, each representing:

• n ≥ 3f + 3 the total number of parameter servers, among which f are
Byzantine

• n the total number of workers, among which f are Byzantine
• 2f + 3 ≤ q ≤ n− f the quorum (see Section 8.3) used for M

2f + 3 ≤ q ≤ n− f the quorum used for F
• d the dimension of the parameter space Rd
Let (without loss of generality):
• [1 .. n− f] be indexes of non–Byzantine parameter servers

[n− f + 1 .. n] be indexes of Byzantine parameter servers
•
[
1 .. n− f

]
be indexes of non–Byzantine workers[

n− f + 1 .. n
]

be indexes of Byzantine workers

Let θ
(i)
t be a notation for the parameter vector at parameter server

i ∈ [1 .. n− f] for step t ∈ N.

Let G
(i)
t be a notation for the gradient distribution at worker i ∈[

1 .. n− f
]

for step t ∈ N.
Let L be the loss function we aim to minimize, let ∇L (θ) be the real

gradient of the loss function at θ, and let ∇̂L (θ) be a stochastic estimation
of the gradient, following G, of L at θ.

23

Let ξt×(k)(a) denote the subset of size k of some set
{
ξ

(1)
t . . . ξ

(n)
t

}
delivered by node a at step t. To highlight the fact that such a subset
can contain up to f arbitrary (Byzantine) vectors, we will also denote it

by
(
ξt×(k − f)(a), ξt×(f)(a)

)
. Also, the exact value of n depends on the

context: in the proof, it will always be n when ξ
(i)
t denotes a gradient, and n

otherwise.

8.2 Initialization

Each non–Byzantine parameter server i starts (at step t = 0) with the same
parameter vector:

∀i ∈ [1 .. n− f] , θ
(i)
0 , θ0

8.3 Proceeding of step t ∈ N

Parameter server Worker

θ
(i)
t q→

q←
g

(j)
t = ∇̂L

(
M
(
θ

(a)
t . . . θ

(b)
t

))
∼ G(j)

t

θ
(i)
t − ηt F

(
g

(x)
t . . . g

(y)
t

)
= θ

(i)
t+1 y

q

M
(
θ

(z)
t+1 . . . θ

(w)
t+1

)
= θ

(i)
t+1 q→

•
x→: each non–Byzantine PS broadcasts their message to all the workers

each non–Byzantine worker only waits for the first x messages it
receives

•
x←: each non–Byzantine worker broadcasts their message to all the PS

each non–Byzantine PS only waits for the first x messages it receives

•

y

x: each non–Byzantine PS broadcasts their message to all the PS
each non–Byzantine PS only waits for the first x messages it

received

24

9 Convergence

9.1 Formulation

Assuming that9:

1. L is Lipschitz continuous, i.e. ∃l > 0, ∀ (x, y) ∈
(
Rd
)2
, ‖∇L (x)−∇L (y)‖ ≤

l ‖x− y‖
2. ∃ts ∈ N, ∀t > ts, ∃

(
δ

(1)
t . . . δ

(α)
t , r

(1)
t . . . r

(α)
t

)
∈ Rα×

(
Rd2
)α

(see Section 9.2.3) ,

∃ (ut, ot) ∈ Rd × Rd, ∀i ∈ [1 .. n− f] , a
(i)
t ∼ N

(
0, δ

(i)
t

)
, b

(i)
t ∼

N
(
ot, r

(i)
t

)
,

with a
(1)
t . . . a

(α)
t , b

(1)
t . . . b

(α)
t mutually independent and θ

(i)
t = a

(i)
t ·ut+

b
(i)
t

3. ∀t ∈ N, g(1)
t . . . g

(n−f)
t are mutually independent

4. ∃σ′ ∈ R+, ∀ (i, t) ∈
[
1 .. n− f

]
× N, E

∥∥∥g(i)
t − E g(i)

t

∥∥∥ ≤ σ′
5. L is positive, and 3–times differentiable with continuous derivatives
6. the sequence of learning rates ηt satisfies

∑
t ηt = +∞ and

∑
t ηt

2 <
+∞

7. ∀ (i, t) ∈
[
1 .. n− f

]
× N, θ(i)

t , M
(
θ

(a)
t . . . θ

(b)
t

)
, E g(i)

t = ∇L
(
θ

(i)
t

)
,

where θ
(a)
t . . . θ

(b)
t represents the q first received parameter vectors from

the parameter servers by worker i.

8. ∀r ∈ [2 .. 4] , ∃ (Ar, Br) ∈ R2, ∀ (i, t, θ) ∈
[
1 .. n− f

]
×N×Rd, E

∥∥∥g(i)
t

∥∥∥ ≤
Ar +Br ‖θ‖r

9. ∃γ ∈ [0, π/2[, ∀ (i, t, θ) ∈
[
1 .. n− f

]
×N×Rd, κ

√
E
(∥∥∥g(i)

t − E g(i)
t

∥∥∥2
)
≤

‖∇L (θ)‖ sin (γ)
10. ∃D ∈ R, ∀θ ∈ Rd, ‖θ‖2 ≥ D, ∃ (ε, β) ∈ R+ × [0, π/2− γ[,
‖∇L (θ)‖ ≥ ε, 〈θ,∇L (θ)〉 ≥ cos (β) ‖θ‖ ‖∇L (θ)‖

where ∃k ∈]1,+∞[:

κ , k

√√√√2

(
n− f +

f
(
n− f − 2

)
+ f

2 (
n− f − 1

)
n− 2 f − 2

)
9Assumptions 3 to 10 are directly imported or adapted from [10].

25

We prove that ∀t ∈ N, ∀
(
θ

(n−f+1)
t . . . θ

(n)
t

)
∈
(
Rd
)f
, θt ,M

(
θ

(1)
t . . . θ

(n)
t

)
:

lim
t→+∞

E ‖∇L (θt)‖ = 0 (2)

9.2 Lemmas

9.2.1 Convergence of
n∑
i=0

kn−i ηi

Let k ∈ [0, 1[and ηi > 0 be the general term of a sequence such that
lim

i→+∞
ηi = 0.

Then:

lim
n→+∞

(
n∑
i=0

kn−i ηi

)
= 0 (3)

Proof. First, we observe that:

lim
t→+∞

ηt = 0 =⇒ ∀ε > 0, ∃τ ∈ N, ∀t ≥ τ, ηt < ε

=⇒ ∃τ ∈ N, ∀t ≥ τ, ηt < 1 (4)

Then, reusing τ from (4), it holds ∀n ≥ 2 τ :

n∑
i=0

kn−i ηi =

τ−1∑
i=0

kn−i ηi +

bn/2c∑
i=τ

kn−i ηi +

n∑
i=bn/2c+1

kn−i ηi

< kn−τ

(
τ−1∑
i=0

kτ−i ηi

)
+

bn/2c∑
i=τ

kn−i +

n∑
i=bn/2c+1

kn−i ηi

< kn−τ

(
τ−1∑
i=0

kτ−i ηi

)
+ kd

n/2e
bn/2c∑
i=τ

kb
n/2c−i + max

i∈[n2 +1 .. n]
(ηi)

n∑
i=bn/2c+1

kn−i

< kn−τ

(
τ−1∑
i=0

kτ−i ηi

)
+

1

1− k

(
kd

n/2e + max
i∈[n2 +1 .. n]

(ηi)

)

Finally, since k ∈]0, 1[and lim
n→+∞

(
maxi∈[n2 +1 .. n] (ηi)

)
= lim

n→+∞
(ηn) = 0,

we conclude:

lim
n→+∞

(
n∑
i=0

kn−i ηi

)
= 0

26

9.2.2 Multi–Krum bounded deviation from majority

Let (d, f) ∈ (N− {0})2, let q ∈ N such that q ≥ 2 f + 3, and let note α , 2 q.
Let note H1 , [1 .. q − f] and H2 , [q + 1 .. 2 q − f].

We will show that:

∃c′ ∈ R+, ∀ (x1 . . . xq) ∈
(
Rd
)q
, ‖F (x1 . . . xq)‖ ≤ c′ max

(i,j)∈H1
2
‖xi − xj‖

One immediate corollary follows:

∃c ∈ R+, ∀ (x1 . . . xα) ∈
(
Rd
)α

, ‖F (x1 . . . xq)− F (xq+1 . . . xα)‖ ≤ c max
(i,j)∈(H1∪H2)2

‖xi − xj‖

Proof. We will proceed by construction of F (Section 7.1).
Let note B1 , [q − f + 1 .. q], and observe that:

|B1| < q − f − 2 ≤ |H1|

Noting by s (xi) the score of input vector xi, we then observe that:

∀i ∈ H1, s (xi) ≤ (q − f) max
(i,j)∈H1

2
‖xi − xj‖

So, to be selected, an input vector indexed by b ∈ B1 (the “Byzantine
group”) must satisfies:

s (xb) ≤ (q − f) max
(i,j)∈H1

2
‖xi − xj‖

Also, because |B1| < q − f − 2, we observe that:

∀b ∈ B1, s (xb) ≥ min
i∈H1

‖xb − xi‖

Hence, since the output vector is the arithmetic mean of some input
vectors in {x1 . . . xq}, any input vector indexed by b ∈ B1 selected in the
arithmetic mean is bounded by:

min
i∈H1

‖xb − xi‖ ≤ (q − f) max
(i,j)∈H1

2
‖xi − xj‖

And we conclude:

∃c′ ∈ R+, ∀ (x1 . . . xq) ∈
(
Rd
)q
, ‖F (x1 . . . xq)‖ ≤ c′ max

(i,j)∈H1
2
‖xi − xj‖

27

The corollary follows immediately since:

‖F (x1 . . . xq)− F (xq+1 . . . xα)‖ ≤ ‖F (x1 . . . xq)‖+ ‖F (xq+1 . . . xα)‖

And ∀k ∈ {1, 2}:

max
(i,j)∈Hk

2
‖xi − xj‖ ≤ max

(i,j)∈(H1∪H2)2
‖xi − xj‖

9.2.3 Coordinate–wise median contraction effect

Let (d, f) ∈ (N− {0})2, let (n, q) ∈ N2 such that 3 f + 3 ≤ n and 2 f + 3 ≤
q ≤ n− f .

Let note α , n− f and β , q − f .

Then:
∃ (δ1 . . . δα, r1 . . . rα) ∈ Rα ×

(
Rd

2
)α

such that ∃m ∈ [0, 1[:

∀ (u, o) ∈ Rd × Rd, ∀ (y1 . . . yf , z1 . . . zf) ∈
(
Rd
)2 f

noting:

a1 ∼ N (0, δ1) . . . aα ∼ N (0, δα) ,

b1 ∼ N (o, r1) . . . bα ∼ N (o, rα) ,

with a1 . . . aα, b1 . . . bα mutually independent variables

x1 , a1 · u+ b1 . . . xα , aα · u+ bα

y ,M (x1 . . . xβ, y1 . . . yf) , z ,M (xα−β+1 . . . xα, z1 . . . zf)

we have:

E ‖y − z‖ ≤ m E

(
max

(i,j)∈[1 .. α]2
‖xi − xj‖

)
(5)

Proof and intuition. It is easy to prove this lemma when r1 = . . . = rα =
0.

Indeed in this case, by construction of the coordinate–wise median, y
belongs to the smallest rectangular parallelotope that contains all x1 . . . xβ.
By construction, we also observe that the diagonal length of this parallelotope
is always max(i,j)∈[1 .. β]2 (‖xi − xj‖).

28

One property of a parallelotope P of diagonal length d is that:

∀ (v, w) ∈ P 2, ‖v − w‖ ≤ d

Similarly, z belongs to the smallest rectangular parallelotope that contains
all xα−β+1 . . . xα, and since a1 . . . aα are mutually independent, we conclude
on the existence of m ∈ [0, 1[.

The intuition is that this contraction effect still remain true when x1 . . . xα
are not aligned anymore. The term bi expresses this misalignment. The open
problem remains to find a closed–form expression that bounds the matrices
r1 . . . rα and guarantee the existence of this effect.

9.3 Proof of GuanYu

We derive a sufficient condition for (2). Namely, we observe that:

lim
t→+∞

E

(
max

(a,b)∈[1 .. n−f]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥) = 0

lim
t→+∞

E
∥∥∥∇L(θ(1)

t

)∥∥∥ = 0

 =⇒ (2)

The first proposition will be proven in Section 9.3.1, and the second proposi-
tion in Section 9.3.2. The above implication is proven below.

Indeed, by one of the triangular inequalities and Lipschitz continuity, we
have:

∀t ∈ N, θt ,M
(
θ

(1)
t . . . θ

(n)
t

)
,
∣∣∣‖∇L (θt)‖ −

∥∥∥∇L(θ(1)
t

)∥∥∥∣∣∣ ≤ ∥∥∥∇L (θt)−∇L
(
θ

(1)
t

)∥∥∥
≤ l
∥∥∥θt − θ(1)

t

∥∥∥
Hence, using the above t and θt, we get:

E
∥∥∥∇L(θ(1)

t

)∥∥∥−lE∥∥∥θt − θ(1)
t

∥∥∥ ≤ E ‖∇L (θt)‖ ≤ E
∥∥∥∇L(θ(1)

t

)∥∥∥+lE
∥∥∥θt − θ(1)

t

∥∥∥
We now recall that, by construction of the coordinate–wise median:

θt ,M
(
θ

(1)
t . . . θ

(n)
t

)
, ∀i ∈ [1 .. d] ,

∣∣∣θt[i]− θ(1)
t [i]

∣∣∣ ≤ max
(a,b)∈[1 .. n−f]2

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣

Hence, observing that:

d∑
i=1

(
max

(a,b)∈[1 .. n−f]2

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣) ≤ (n− f) (n− f − 1)

2
max

(a,b)∈[1 .. n−f]2

(
d∑
i=1

∣∣∣θ(a)
t [i]− θ(b)

t [i]
∣∣∣)

29

The equivalence of norms yields here:

E
∥∥∥θt − θ(1)

t

∥∥∥ ≤ √d (n− f) (n− f − 1)

2
E

(
max

(a,b)∈[1 .. n−f]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥)

Finally, using both the first and second propositions, we conclude:

lim
t→+∞

E ‖∇L (θt)‖ = 0

9.3.1 Almost–sure contraction of the non–Byzantine parameter
vectors

We reuse the constant m ∈ [0, 1[from the contraction effect of M (Section
9.2.3). Assumption 2 states that this contraction effect appears only after
step ts.

We reuse the constant c ∈ R+ from the bounded deviation lemma of F
(Section 9.2.2).

Using the assumption that non–Byzantine gradient estimations’ deviation
is bounded (Assumption 4), since the number of non–Byzantine workers is
also bounded, it holds that:

∃σ ∈ R+, ∀t ∈ N, E

(
max

i∈[1 .. n−f]

∥∥∥g(i)
t − E g(i)

t

∥∥∥) ≤ σ
For step t > ts:

E

(
max

(a,b)∈[1 .. n−f]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥)

≤ m E
(

max
a,b

∥∥∥θ(a)
t−1 − θ

(b)
t−1

∥∥∥)+ cmηt−1 E
(

max
a,b

∥∥∥G(a)
t−1 −G

(b)
t−1

∥∥∥)
≤ m E

(
max
a,b

∥∥∥θ(a)
t−1 − θ

(b)
t−1

∥∥∥)+

cmηt−1

(
2σ + E

(
max

(x,y)∈[1 .. n−f]
2

∥∥∥∇L(M (
θt−1×(q − f)(x), θt−1×(f)(x)

))
−

∇L
(
M
(
θt−1×(q − f)(y), θt−1×(f)(y)

))∥∥∥))
≤ m E

(
max
a,b

∥∥∥θ(a)
t−1 − θ

(b)
t−1

∥∥∥)+ cmηt−1

(
2σ + l m E

(
max
a,b

∥∥∥θ(a)
t−1 − θ

(b)
t−1

∥∥∥))

30

Noting E
(

max
a,b

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥) , 2σ cm · ut, it holds for step t > ts:

0 < ut ≤ mut−1 +
(
l cm2

)
ηt−1 ut−1 + ηt−1

We now prove that lim
t→+∞

ut = 0.

First, since
∑
t∈N

ηt
2 converges, we make the trivial observation that

lim
t→+∞

ηt = 0, and:

lim
t→+∞

ηt = 0 =⇒ ∀ε > 0, ∃τ ∈ N, ∀t ≥ τ, ηt < ε

=⇒ ∃k ∈]m; 1[, ∃τ ∈ N, ∀t ≥ τ, ηt <
k −m
l cm2

(6)

Then, using k and τ from (6), it holds:

uτ+1 ≤ muτ +
(
l cm2

)
ητ uτ + ητ

≤ k uτ + ητ

Similarly for step τ + t > τ + ts:

uτ+t ≤ k uτ+t−1 + ητ+t−1

uτ+t ≤ k uτ+t−2 + k ητ+t−2 + ητ+t−1

≤ kt uτ +

t∑
i=1

ki−1 ητ+t−i

Finally, using Lemma (3), we conclude that:

lim
t→+∞

E

(
max

(a,b)∈[1 .. n−f]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥) = lim
t→+∞

ut = lim
t→+∞

uτ+t = 0

9.3.2 Almost–sure convergence argument of the loss function’s
gradient

A direct consequence of Subsection 9.3.1 is that beyond a certain time, the
standard deviation of the gradient estimators, as well as the drift between
the (non–Byzantine) parameter vectors can be bounded arbitrarily close to a
single server situation. More precisely, let ε > 0 be any positive real number.

31

The following holds, and is a direct consequence of the limits stated above:

∃tε ≥ 0, ∀t ≥ tε,

E

(
max

i∈[1 .. n−f]

∥∥∥g(i)
t − E g(1)

t

∥∥∥) ≤ σ + ε

E

(
max

(a,b)∈[1 .. n−f]2

∥∥∥θ(a)
t − θ

(b)
t

∥∥∥) < ε
l

The first inequality provides the bounded variance guarantee needed
to plug GuanYu into the convergence proof of [10], the second inequality
provides the remaining requirement, i.e. the bound on the statistical higher
moments of the gradient estimator as if there was a single parameter. More
precisely, we have the following, let (a, b) be any two non-Byzantine param-
eter servers, using a triangle inequality, the second inequality above and
Assumption 8 (bounded moments) we have:

∀t > tε∀r ∈ [2 .. 4] , ∃ (Ar, Br) ∈ R2,

∀ (i, t, θ) ∈
[
1 .. n− f

]
× N× Rd, E

∥∥∥g(a)
t

∥∥∥ ≤ A′r +B′r

∥∥∥θ(b)
t

∥∥∥r
where A′r and B′r are positive constants, depending polynomially (at most
with degree r, by using the second inequality above, the triangle inequality
and a binomial expansion) on ε, σ and (Ar, Br) from Assumption 8, allowing
us to use the convergence proof of [10] (Proposition 2) regardless of the
identity of the (non–Byzantine) parameter server.

9.4 Practical evidence

In order to validate our assumptions in the practice, we did some micro–
measurements to observe the alignment of the parameter vectors. In this
section, we describe our methodology and results.

Methodology. We consider the quantities θ
(i)
t , ∀i ∈ [1 .. n− f] and t > ts

(our assumption must hold eventually, e.g. after some large number of steps
ts). First, we calculate the differences between all parameter vectors (we
name this difference vectors) and kept ones with the k highest norms. Then,
we calculate the angle between these difference vectors to see how they
are aligned. We do that every 20 steps, to empirically check whether our
assumption keeps holding.

32

Results. Generally, we find that the angle between differences (from dif-
ference vectors) of the highest norms is always close to 0°. We give here the
values of cos (φ) where, φ is the angle between two difference vectors which
are a and b. This is given by a·b

‖a‖‖b‖ . Thus, the closer this value to 1, the
closer the angle to 0°. Sample results are given in Table 2. This is just a
snippet from the results we found.

Table 2: This table depicts the experimental results we have while studying
contraction of parameter vectors. It gives (at some steps) the biggest 2
norms of differences between parameter vectors collected by non–Byzantine
parameter servers along with cos (φ) where φ is the angle between these two
difference vectors. This is recorded after some large step number.

Step cos (φ) max diff1 max diff2

1340 0.9822574257850647 1.4122562 1.4163861

1380 0.9926297664642334 1.3927394 1.3937825

1400 0.9881128072738647 1.493591 1.5035304

1440 0.9863847494125366 1.345111 1.3537675

1480 0.9819352030754089 1.3270174 1.3435347

33

	1 Introduction
	2 Model
	2.1 Asynchronous Network / Synchronous Training
	2.2 Adversary Capabilities

	3 GuanYu
	3.1 Background
	3.2 Notations
	3.3 GuanYu's Algorithm
	3.4 Assumptions
	3.5 Proof Intuition

	4 Implementation
	5 Experimental Evaluation
	5.1 Setting
	5.2 Evaluation Metrics
	5.3 Non–Byzantine Environment
	5.4 Byzantine Environment

	6 Conclusion
	7 Preliminary material
	7.1 Multi–Krum
	7.2 Coordinate–wise median

	8 GuanYu
	8.1 Constants and notations
	8.2 Initialization
	8.3 Proceeding of step t N

	9 Convergence
	9.1 Formulation
	9.2 Lemmas
	9.2.1 Convergence of i=0nkn - i i
	9.2.2 Multi–Krum bounded deviation from majority
	9.2.3 Coordinate–wise median contraction effect

	9.3 Proof of GuanYu
	9.3.1 Almost–sure contraction of the non–Byzantine parameter vectors
	9.3.2 Almost–sure convergence argument of the loss function's gradient

	9.4 Practical evidence

